Auxiliary function for setting up the default dae-related hyperparameters for midae.
Usage
dae_default(
shuffle = TRUE,
drop.last = FALSE,
input.dropout = 0.2,
hidden.dropout = 0.5,
optimizer = "adamW",
learning.rate = 0.001,
weight.decay = 0.01,
momentum = 0,
dampening = 0,
eps = 1e-08,
rho = 0.9,
alpha = 0.99,
learning.rate.decay = 0,
encoder.structure = c(256, 128, 64),
latent.dim = 8,
decoder.structure = c(64, 128, 256),
act = "elu",
init.weight = "he.normal.elu.dropout",
scaler = "standard",
initial.imp = "sample",
lower = 0.25,
upper = 0.75
)Arguments
- shuffle
Whether or not to shuffle training data. Default:
TRUE.- drop.last
Whether or not to drop the last batch. Default:
FALSE.- input.dropout
The dropout probability of the input layer. Default: 0.2.
The dropout probability of the hidden layers. Default: 0.5.
- optimizer
The name of the optimizer. Options are :
"adamW"(default),"adam","adadelta","adagrad","rmsprop", or"sgd".- learning.rate
The learning rate. Default: 0.001.
- weight.decay
Weight decay (L2 penalty). Default: 0.01.
- momentum
Parameter for the
"sgd"optimizer (default: 0). It is used for accelerating SGD in the relevant direction and dampens oscillations.- dampening
Dampening for momentum (default: 0) used for the
"sgd"optimizer.- eps
A small positive value (default: 1e-08) used to prevent division by zero for optimizers
"adamW","adam","adadelta","adagrad"and"rmsprop".- rho
Parameter for the
"adadelta"optimizer (default: 0.9). A coefficient used for computing a running average of squared gradients.- alpha
Smoothing constant (default: 0.99) for the
"rmsprop"optimizer.- learning.rate.decay
Learning rate decay (default: 0) for the
"adagrad"optimizer.- encoder.structure
A vector indicating the structure of encoder. Default: c(256, 128, 64)
- latent.dim
Size of the latent layer. Default: 8.
- decoder.structure
A vector indicating the structure of decoder. Default: c(64, 128, 256)
- act
The name of activation function. Can be:
"relu","elu"(default),"leaky.relu","tanh","sigmoid"and"identity".- init.weight
The distribution for weight initialization. Can be
"he.normal","he.uniform","xavier.uniform","xavier.normal","he.normal.dropout","he.normal.elu","he.normal.elu.dropout"(default),"he.normal.selu"or"he.normal.leaky.relu".- scaler
The name of the scaler used for transforming numeric features. Can be
"standard"(default),"minmax","decile","robust"or"none".- initial.imp
The method for initial imputation. Can be
"mean","median"or"sample"(default).- lower
The lower quantile (0.25 by default) for
scaler = "robust".- upper
The upper quantile (0.75 by default) for
scaler = "robust".
