
multiple imputation through variational autoencoders (latent) haven't change default setting yet
Source:R/mivaelatent.R
mivae.latent.Rdmultiple imputation through variational autoencoders (latent) haven't change default setting yet
Arguments
- data
A data frame, tibble or data table with missing values.
- m
The number of imputed datasets.
- categorical.encoding
The method for representing multi-class categorical features. Can be either "embeddings" or "onehot" (default).
- device
Device to use. Either "cpu" (default) or "cuda" for GPU.
- epochs
The number of training epochs (iterations). Default: 100.
- batch.size
The size of samples in each batch. Default: 512.
- subsample
The subsample ratio of training data. Default: 1.
- early.stopping.epochs
An integer value
k. Mivae training will stop if the validation performance has not improved forkepochs, only used whensubsample<1. Default: 1.- vae.params
A list of parameters for variational autoencoders. See
vae_defaultfor details.- pmm.params
A list of parameters for predictive mean matching. See
vae_pmm_defaultfor details.- loss.na.scale
Whether to multiply the ratio of missing values in a feature to calculate the loss function. Default: FALSE.
- verbose
Whether or not to print training loss information. Default: TRUE.
- print.every.n
If verbose is set to TRUE, print out training loss for every n epochs. Default: 1.
- save.model
Whether or not to save the imputation model. Default: FALSE.
- path
The path where the final imputation model will be saved.