Skip to contents

Generates a Trelliscope display for overimputation diagnostics across all variables.

Usage

trellis_vismi_overimp(
  obj,
  m = NULL,
  imp_idx = NULL,
  integerAsFactor = FALSE,
  num_plot = "cv",
  fac_plot = "cv",
  train_color_pal = NULL,
  test_color_pal = NULL,
  stack_y = FALSE,
  diag_color = NULL,
  seed = 2025,
  nrow = 2,
  ncol = 4,
  path = NULL,
  ...
)

Arguments

obj

An object of class 'overimp' containing imputed datasets and parameters.

m

A single positive integer specifying the number of imputed datasets to plot. It should be smaller than the total number of imputed datasets in the object. Default is NULL ( plot all).

imp_idx

A vector of integers specifying the indices of imputed datasets to plot. Default is NULL (plot all).

integerAsFactor

A logical indicating whether integer variables should be treated as factors. Default is FALSE (treated as numeric).

num_plot

A character string specifying the type of plot for numeric variables. Options are "cv" (cross-validation), "ridge", or "density". Default is "cv".

fac_plot

A character string specifying the type of plot for categorical variables. Options are "cv" (cross-validation), "bar", or "dodge". Default is "cv".

train_color_pal

A vector of colors for the training data. If NULL, default colors will be used.

test_color_pal

A vector of colors for the test data. If NULL, default colors will be used.

stack_y

A logical indicating whether to stack y-values in the plots. Default is FALSE.

diag_color

A color specification for the diagonal line in the plots. Default is NULL.

seed

An integer seed for reproducibility. Default is 2025.

nrow

Number of rows in the Trelliscope display. Default is 2.

ncol

Number of columns in the Trelliscope display. Default is 4.

path

Optional path to save the Trelliscope display. If NULL, the display will not be saved to disk.

...

Additional arguments to customize the plots, such as point_size, xlim, ylim.

Value

A Trelliscope display object visualising overimputation diagnostics for all variables.