Skip to contents

This function generates convergence diagnostic plots showing the mean and standard deviation (SD) of imputed values for a specified variable across iterations.

Usage

vismi_converge(
  obj,
  x,
  xlim = NULL,
  mean_lim = NULL,
  sd_lim = NULL,
  title = "auto",
  subtitle = "auto",
  tick_vals = NULL,
  color_pal = NULL,
  linewidth = 0.8,
  ...
)

Arguments

obj

A 'mixgb' object returned by mixgb() function or a 'mids' object returned by the mice() function.

x

The name of the variable to plot convergence for.

xlim

Optional numeric vector of length 2 specifying the x-axis limits for iterations.

mean_lim

Optional numeric vector of length 2 specifying the y-axis limits for mean values of the variable.

sd_lim

Optional numeric vector of length 2 specifying the y-axis limits for standard deviation values of the variable.

title

A string specifying the title of the plot. If NULL, no title is shown. If "auto", a title will be generated based on the input. Default is "auto".

subtitle

A string specifying the subtitle of the plot. If NULL, no subtitle is shown. If "auto", a title will be generated based on the input. Default is "auto".

tick_vals

Optional numeric vector specifying x-axis tick values for iterations.

color_pal

A vector of m color codes (e.g., hex codes). If NULL, default colors will be used.

linewidth

The line width for the plot lines. Default is 0.8.

...

Additional arguments.

Value

Two side-by-side ggplot2 object showing the mean and standard deviation (SD) of imputed values for a specified variable across iterations.

Examples

library(mixgb)
set.seed(2026)
mixgb_obj <- mixgb(data = nhanes3, m = 3, maxit = 4, pmm.type = "auto", save.models = TRUE)
vismi_converge(obj = mixgb_obj, x = "recumbent_length_cm")